
AD-AilS 632 GENERAL ELECTRIC CO ARLINGTON VA INFORMATION SYSTEMS-ETC FIG 9/2
AN EMPIRICAL EVALUATION OF LANGUAGE-TAILORED POLS.(U)

MAY A2 0 A BOEHM-DAVIS, S B SHEPPARD NOGOI'4-79-C-0595

UNCLASSIFIED GEC/ISP/TR-Al 388200 6 NL

I,7

I
GEC/ISP/TR-82-388200-6

AN EMPIRICAL EVALUATION OF
I LANGUAGE-TAILORED PDLS
!
I

I !DEBORAH A. BOEHM-DAVIS
SYLVIA B. SHEPPARD

JOHN W. BAILEY
ELIZABETH KRUESI

Software Management Research

General Electric Company
1755 Jefferson Davis Highway

Arlington, Virginia 22202

' MAY 1982

\ Dizs buh ioU , , "

1 82 06 15 oo5

Unclassified
SECURITY C.ASSFII'CATION OF THIS PAGE (When Data Entered)

REPORT DOCUAENTATION PAGE READ INSTRUCTIONS
R BEFORE COPLE-!NG FORM

I REPORT NUMBER 2GOThC7SION NO. 3. RE f'PIENT'SCATALZ)G N4UMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIO3 COVERED

An Empirical Evaluation of Language-Tailored POLs Technical Report
6. PERFORMING ORS. REPORT NUMBER

GEC/ISP/TR-82-388200-6
7. AUTNO0R(s) 8. CONTRACT OR GRANT NUMBER(s)

Deborah A. Boehm-Davis, Sylvia B. Sheppard, N00014-79-C-0595
John W. Bailey, & Elizabeth Kruesi

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROCECT, TASK

AREA & WORK UNIT NUMBERS

Information Systems Programs 61153N 42
General Electric Company RR04209 01
1755 Jefferson Davis Hwy., Arlington, VA 22202 NR 196-160

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Engineering Psychology Group, Code 442 May 1982
Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 50
14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassi fied
SAME

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report) l ft

SAME

18. SUPPLEMENTARY NOTES

Technical Monitor: Dr. John J. 0'Hare

19. KEY WORDS (Continue on reverse side it neces ry and Identify by block number)

Software engineering, Software experiments, Structured programming,
Modern programing practices, Software documentation, Flowcharts,
Program design language, Software human factors, Software specifications.

20. ABSTRACT (Continue on reverse side If necessary end Identify by block number)

Recent research in the area of program documentation has demonstrated a
superiority for coding done with a detailed design written in a Program Design
Language (PDL) over other formats such as flowcharts. Because PDL is more
code-like than other formats, there is less translation required in mappingJ from the design to the code. If the amount of translation is a critical
underlying factor, the optimal PDL for any given implementation will be one

DD I 1473 EirIOm or 1 NOV 65 IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ("a, n Date Entereer

_ -Unclassified

SECURITY CLASSIFICATION OF THIS PAGEt'Whe Dae Entered)

that is tailored toward the particular language being used. This experiment
evaluated the effectiveness of using a PDL specifically designed to aid in
coding the corresponding programing language. This was done by designing
PDLs which reflected the syntax and features of particular programing
languages and by examining the performance of programmers coding from these
various PDLs in one of two implementation languages.

The participants were presented with three programs, in either FORTRAN or
MACRO-il (PDP-ll assembly language), from which several lines had been
deleted. The task was to complete the code on line. For each program, the
participants received one version of the PDLs, a listing of the partially
completed code and a data dictionary. An interactive data collection system
captured the overall time to code and debug the programs and the number and
types of errors made. Data on the participants' previous programing
experience and subjective ratings of the usefulness of the various forms of
PDL were collected from questionnaires completed at the end of the
experimental session.

The results showed that (a) it took longer to code programs in MACRO-i
than in FORTRAN, (b) the shortest time to code the programs occurred when the
coding language of the PDL matched the actual coding language, and (c) the
type of PDL and coding language did not significantly affect the number of
errors made in coding while the type of problem did. The data suggest that
programmers produce code most quickly from a form of documentation that is
closest to the code.

This research suggests that providing detailed design information in terms
of a language-specific PDL will lead to a shorter coding period than when a
language-independent PDL is used.,

Avt .l 3, '
'

JUnclassifipd

SECURITY CLASSIFICATION OF THIS P&Ger
v e

m Diet Entered)

GEC/ ISP/TR-82-388200-6

AN EMPIRICAL EVALUATION OF
LANGUAGE-TAILORED PDLS

DEBORAH A. BOEHM-DAVIS
SYLVIA B. SHEPPARD

JOHN W. BAILEY
ELIZABETH KRUESI

Software Management Research
Information Systems Programs

General Electric Company
1755 Jefferson Davis Highway

Arlington, Virginia 22202

Submitted to:

Office of Naval Research
Engineering Psychology Group

Arlington, Virginia

Contract: N00014-79-C-0595
Work Unit: NR 196-160

MAY 1982

Approved for public release: distribution unlimited. Reproduction in whole or in part
is permitted for any purpose of the United States Government.

TABLE OF CONTENTS

Title Page

INTRODUCTION .. 1

METHOD .. 5

Participants .. 5

Independent Variables ... 5
Coding Language ... 5
Program Design Language .. 5
Problem... 6

Procedure .. 7

Design .. 9

RESULTS ... 10

Time to Code and Debug.. 10

Errors 12

Preferences NTSfP.......................... . 23

Experiential Factors .. 15

DISCUSSION .. 16

ACKNOWLEDGEMENTS.. 20

REFERENCES 21

APPENDIX A - PRL FORMATSTINGS.. 23

APPENDIX B - PROGRAM LISTINGS... 35

TECHNICAL REPORTS DISTRIBUTION LIST 45

i

INTRODUCTION

The means by which design information is communicated among software

personnel is an important issue in the development of software. Major tasks

in the software life cycle, such as design, coding, testing, and maintenance,

are frequently performed by different individuals. Leintz and Swanson (1979)

found that typically only about half of a software system's maintenance

personnel had been involved in its development. Communication among these

personnel is no better than the documentation they develop. Poor

documentation techniques can dramatically increase labor costs throughout the

labor-intensive software life cycle by making both development and maintenance

tasks more difficult. Design information, in particular, must be communicated

effectively so that the integrity of a system will not be compromised when

modifications are implemented.

The transmission of design information in documentation was examined in an

earlier study. Sheppard and Kruesi (1981) compared the performance of

programmers who were coding from a number of different documentation formats.

A total of nine different formats represented the factorial combination of

three types of symbology with three spatial arrangements. These two

dimensions were chosen because they are the primary dimensions for

categorizing the way in which available documentation aids configure the

information they present to programmers (Jones, 1979). The three types of

symbology in which information was presented consisted of normal English,

program design language, and ideograms. The spatial arrangements of the

information used in this experiment were sequential, branching, and

hierarchical.

(-l -

In this experiment, 36 professional programmers were presented with

documentation for three programs. Working from this documentation, the

participants constructed a section of code at the middle of each program.

These sections contained about 15 lines and included the most complex decision

structures present in the programs. The difficulty of the coding task was

measured by four dependent variables: (1) the time to code and debug, (2) the

number of submissions required for a correct run, (3) the number of errors,

and (4) the number of editor transactions.

The participants were given a short preliminary exercise to familiarize

them with the experimental task. Following the exercise, they were given a

program listing, a documentation format, and a data dictionary for each of

three modular-sized FORTRAN programs (about 50 lines of code). Across the

three programs, they saw each type of synbology and each spatial arrangement.

A participant, for example, might see the first program presented in

sequential normal English, the second program in hierarchical PDL, and the

third program in branching ideograms. Using a text editor,\ they were asked to

code the missing segment of the program at a CRT terminal. An on-line

data-collection system recorded all interactions with the editor and the time

required for each interaction. An automatic-checking procedure informed the

participants if the program had been compiled and run successfully or

requested that they continue working until a successful execution had been

achieved.

The participants were professional programmers employed by General

Electric Company with a mean of 5.3 years of professional programming

experience. Across the participants, each program, symbology, and arrangement

-2-

was presented first, second, and third an equal number of times. At the

completion of each experiment, the participants were given a questionnaire

asking their preferences regarding the documentation formats they had seen.

A comparison of the individual formats revealed that the constrained

language presented in the sequential arrangement (normal PDL) resulted in the

highest level of performance as measured by all of the dependent variables.

In terms of the mean time required to code and debug the program, the normal

PDL required only 16.5 minutes as compared with the 31.8 minutes required for

the normal English (sequential natural language). A normal flowchart

arrangement (branching ideograms) required an intermediate amount of time,

24.7 minutes. A particularly striking result is that the majority of

participants made no errors with the normal PDL. The results from this

experiment provide clear evidence that PDL is the optimal documentation format

for coding.

The question that arises is why this form of documentation is superior to

the other formats tested. The most probable explanation of this superiority

is that PDL was the most code-like of all documentation formats tested. As a

result, there was less translation required in mapping between the

documentation and the code. It is important to note that the participants in

these experiments were coding in FORTRAN and that they were given a

FORTRAN-like PDL. If the amount of translation is a critical underlying

factor, no single form of PDL will be optimal for all coding languages.

Rather, the optimal PDL will be one that is tailored toward the particular

coding language.

-3-

The current research examined this hypothesis by creating and evaluating

several different PDLs, each of which was tailored toward a particular coding

language.

Alan Perlis (1981, p. 104) has described four classes or levels of

languages in common use today based on their power for describing

computations. The categorization he has proposed is:

(1) machine assembly language;

(2a) ALGOL-like, such as ALGOL 60, FORTRAN, COBOL, and Pascal;

(2b) ALGOL-like with tasking such as JOVIAL, ALGOL 68, CMS-2, PL/I,
and Ada; and

(3) interpretive languages which operate on data structures in
parallel such as APL and LISP.

Perlis hypothesizes that the use of a language at a higher level will

decrease overall software life-cycle costs by making testing and maintenance

easier.

For this experiment, we selected one coding language from each of his

three major levels (MACRO-11, FORTRAN, and APL), and designed a PDL tailored

to each language. Each PDL was designed such that it resembled its

corresponding language while remaining comprehensible to a programmer not

skilled in the target language.

Using these materials, we were able to test the hypothesis that the

correspondence between the PDL and the coding language is an important

determinant of coding performance.

-4-

METHOD

Participants

Twenty-four professional programmers from three different locations

participated in this experiment. All were General Electric employees. The

participants averaged 6.1 (s.d. = 3.7) years of programming experience and had

used an average of 6.5 (s.d. = 2.6) programming languages.

Independent Variables

The experiment was designed to study the effects of three independent

variables: coding language, type of PDL, and type of problem.

Coding Language. Two coding languages were used in this experiment:

MACRO-11 and FORTRAN. MACRO-11 is the machine assembly language for the

PDP-1l and represents the lowest class of programming languages as described

by Perlis (1981). FORTRAN was chosen as representative of a higher-level

language from Perlis' categorization scheme.

Program Design Language. The statements from each program were translated

into PDLs which were tailored to each of three coding languages: MACRO-li,

FORTRAN, and APL. Each PDL was designed to resemble its corresponding

language, but still be comprehensible to a programmer not skilled in the

target language. The MACRO PDL used left-handed arrows (--) to indicate

assignment to registers and variables. Mathematical symbols (e.g., +, -,

were used to indicate operations on the data. The FORTRAN PDL used the form

-5-

"set x " to indicate assignment and used mathematical symbols to indicate

operations. Selection and repetition constructs were indented to show the

program structure. The APL PDL used mathematical notation to indicate both

assignment and operations on the data. Since APL is a vector-oriented

language, summation over a range (e.g., ZX i, for i = I, ... , n) was used

to indicate operations repeated for each data element. No indentation was

used in the APL POL. An example of each version of PDL is shown for each of

the three programs in Appendix A.

Problem. In our previous research (Sheppard, Curtis, Milliman, & Love,

1979), significant differences in programmer performance were often associated

with differences among problems. Three problems of varying types were chosen

for use in this experiment. A program which simulated the path of a rocket

was chosen as representative of an engineering problem. A sorting procedure

represented the class of programs that manipulate strings or data objects. A

third program, representative of a statistical procedure, calculated a

correlation coefficient.

These three programs were based on problems contained in Barrodale,

Roberts, and Ehle (1971). The problems were coded in both MACRO-Il and

FORTRAN and verified for correctness. Each of the resulting MACRO-Il programs

contained approximately 45 lines of executable code while each of the

resulting FORTRAN programs contained approximately 30 lines of executable

code. In addition, a problem to calculate the greatest common divisor of two

numbers was coded in each language and used as a practice program.

-U-

A section of 3-6 lines of code was deleted from each program. This

section, to be completed by the participants, was located somewhere near the

middle of the program. The portions deleted from the MACRO-li and FORTRAN

versions of the same problem were chosen to represent a roughly equivalent

number of keystrokes and the same (or similar) functions. The statements

which the participants were required to construct consisted of assignment,

selection, and iteration statements. All dimension, format, and input-output

statements as well as all variable declarations were included in the

participants' listings. The three problems are presented in each language in

Appendix B. The programs are shown as they were presented to the

participants, i.e., with the to-be-completed section deleted. For the

reader's convenience, the deleted portions of the programs are presented at

the end of each program, enclosed in brackets.

Procedure

Prior to the experiment, the participants were given a 20-minute training

session in which they were shown examples of each type of PDL. The

experimenter also described the procedure for using the text editor to

construct the programs during this session.

Experimental sessions were conducted at CRT terminals on a VAX 11/780.

Each participant coded all of the problems in either MACRO-Il or FORTRAN. The

participants were first given a practice program from which a single line had

been deleted. Identical listings of the code appeared on the CRT screen and

on a paper printout. The participants were instructed to complete the code,

using the text editor. When satisfied that the program would perform

-7-I

correctly, the participants exited from the editor and activated a command

file to compile and run the program. If the compilation or assembly was

unsuccessful, a message appeared on the screen directly below the line or

lines containing the error. If the program had assembled or compiled, the

output from the program appeared on the screen with one of the following

messages: "OUTPUT IS CORRECT" or "OUTPUT IS INCORRECT." In the latter case,

the participant was asked to correct the errors and submit the run again.

Following the practice program the three experimental programs were

presented. For each program, the participants received one version of the

PDL. In addition, the participants received identical listings of the

partially-completed code on the CRT screen and on a paper printout. They also

received a data dictionary containing the variable names, a natural-language

description of the variables, and the data types. Across the three programs,

each participant saw each type of PDL (MACRO-ll, FORTRAN, APL) and each

problem (correlation, rocket, sort).

An interactive data collection system prompted the participant throughout

the experimental procedure. The system recorded each call for an editor

command (i.e., ADD, DELETE, LIST, or CHANGE) and the resultant changes in the

program. An interval timer, accurate to the nearest second, recorded the time

for each of these actions. When a participant required more than one editing

session to complete the program correctly, the experimental system recorded

exits from the editor, any compilation errors, and the incorrect outputs

generated. From these data, the time to code and debug the programs was

calculated by summing the times from the individual editing sessions; time for

compiling and running the programs was not included.

-8-

,he participants spent approximately 14 minutes on each experimental

program. They were required to continue working on a program until it was

completed successfully. They were allowed to take breaks between programs.

Following the experiment, the participants completed a questionnaire about

their previous programming experience. The information requested included

number of years of experience, and number of programming languages known. The

participants were also asked to rate how easy or hard each PDL was to use and

how much they relied on each.

Design

The experimental design used in this experiment was a 2 X 3 X 3 mixed

between/within subjects design where the kind of programming language

(MACRO-11 or FORTRAN) was a between-subject variable and the kind of PDL

(MACRO-ll, FORTRAN, or APL) and kind of problem (correlation, sort, or rocket

simulation) were within-subject variables. Each individual within a group

coded three of the nine possible combinations of PDL and problem in one

programming language. For example, a participant in the IIACRO-11 group might

code the rocket problem working from the MACRO-11 PDL, the correlation problem

from the APL POL, and the sort problem from the FORTRAN PDL. The order in

which the participants were observed under each treatment condition was

randomized independently for each participant. The analysis of this design

was based on an example given in Winer (1971, p. 727-736).

-9-

RESULTS

Time to Code and Debug

The participants required an average of 14 minutes to code and debug a

program. This represents the amount of time spent studying the program,

coding the program, and using the text editor (i.e., the total time spent at

the terminal less the time for compiling or assembling, linking, and running).

PROBLEM

CORRELATION ROCKET SORT

MEAN TIME TO COMPLETE
CODING TASK 10.4 14.0 18.8

(MINUTES)

MEAN NUMBER OF ERRORS 0.3 1.0 1.5

Table 1.
A Comparison of the Dependent Variables for the Three Algorithms

The mean times to complete the code for each of the three programs is

shown in Table 1. As can be seen from the table, there were large differences

in the amount of time required to complete the programs. The correlation

problem required the least amount of time to complete (10.4 minutes), while

the sort problem required the greatest amount of time (1.8 minutes). An

analysis of variance on the coding times across problems supported this

conclusion (F (2,36) = 9.29, p<.01, MSe = 46.42).

-10-

Table 2 shows the mean times for each combination of PDL and coding

language. (The shaded portions in this, and subsequent, tables indicate the

conditions where the best performance was expected on the basis of a match

between actual coding and PDL coding language.) For those participants coding

in FORTRAN, the problem coded using the FORTRAN PDL required the least amount

of time (6.7 minutes). For those participants coding in MACRO-ll, the problem

coded using the MACRO-ll PDL required the least amount of time (12.2

minutes). Regardless of coding language, the problem coded using the APL PDL

required the most time to code (Mean = 19.4 minutes).

CODING POL

LANGUAGE MACRO-11 FORTRAN APL

MACRO-11 12.2 17.7 21.2;;-:;;...:.'..

FORTRAN 11.3. .:6.7 17.5

Table 2. Mean Time to Complete Coding Task (in Minutes)

An analysis of variance on the coding times revealed that there was a main

effect for coding language (F (1,18) = 7.00, p .01, MSe = 70.31) and for

PDL (F (2,36) = 9.58, p .01, MSe = 46.42). In general, coding in FORTRAN

took less time than coding in MACRO-lI; it took about the same amount of time

to code from the MACRO-1l and FORTRAN PDLs and it took longer to code from the

APL PDL.

In addition, the interactions between PDL and coding language

(F (2,36) = 3.53), PDL and problem (F (2,36) = 4.21), and POL, problem, and

-11-

coding language (F (2,36) = 4.87) were all significant at the .05 level. An

examination of the data revealed that the interaction between PDL and coding

language arose from the fact that the MACRO-lI PDL led to the shortest time

when coding in MACRO-li while the FORTRAN PDL led to the shortest time when

coding in FORTRAN. The interaction between PDL and problem arose from the

fact that the time required to code the problems increased from the MACRO-IT

PDL through the FORTRAN PDL to the APL PDL when coding the correlation and

sort problems. On the other hand, the time required for the MACRO-Il and APL

PDLs was roughly equal and they both required more time than the FORTRAN PDL

when coding the rocket problem. The underlying cause of this interaction and

of the three-way interaction is unclear.

Errors

For programs that did not run successfully on the first submission, the

participants' editing activities for subsequent submissions were analyzed to

determine the number of errors. Tables 1 and 3 show that the number of errors

was very low. Due to the low number of errors, no categorization of the

different types of errors was carried out. An analysis of variance on the

error data showed a significant effect due to problem (F (2,36) = 4.78,

P .05, MSe = 1.72), with the sort program resulting in the greatest number

of errors and the correlation program in the fewest number. None of the other

main effects or interactions were significant at the .05 level. However, the

errors do show the same trend as the coding times. The smallest number of

errors for each coding language was associated with the PDL tailored to that

coding language. In addition, the APL PDL was associated with the largest

number of errors for both coding languages.

-12-

CODING PDL

LANGUAGE MACRO-11 FORTRAN APL

MACRO-11 0.6 1.3 1.7

FORTRAN 0.4 0.3 1.2

Table 3. Mean Number of Errors

Preferences for PDL

Across the three programs, the participants received a PDL tailored toward

each of the three coding languages. On the questionnaire, they were asked to

state which PDL was the easiest to use and which was the hardest to use. They

were also asked to rate how much they relied on each version of POL on a

seven-point scale (from 0 = not at all to 7 = constantly throughout). Table 4

shows the number of people in each coding language condition who chose each

POL as the easiest to use while Table 5 shows the number of people who chose

each POL as the hardest to use. (One participant in the FORTRAN coding

condition said that all three versions of POL were the easiest to use; that

response was not included in the tallies shown in the table.)

CODING PDL

LANGUAGE MACRO-11 FORTRAN APL
MACRO- 119.2 1

FORTRAN 1 I 0

Table 4. Number of Times P0L Chosen as Easiest to Use

-13-

CODING PDL

LANGUAGE MACRO-11 FORTRAN APL
MACRO-11 1...... 1 1 10

FORTRAN 9 . . 0 .:::::.>: 0 :~: 2

Table 5. Number of Times PDL Chosen as Hardest to Use

It can be seen that participants coding in MACRO-1I found the MACRO-1i PDL the

easiest to use and the APL PDL the hardest to use. On the other hand,

participants coding in FORTRAN found the FORTRAN PDL the easiest to use and

the IIACRO-lI PDL (rather than the APL PDL) the hardest to use. Table 6 shows

the mean rating of how much they relied on each PDL for each problem in each

coding language condition.

CODING __ _ PROBLEM

LANGUAGE POL CORRELATION ROCKET SORT TOTAL

MACRO-11 .5.8 .. . 5.5 5.. . . .5.7

MACRO-11 FORTRAN 4.5 4.0 3.8 4.1

APL 3.3 3.3 0.5 2.3

MACRO-11 3.8 5.0 5.3 4.7

FORTRAN FORTRAN 5.0 4.5 4.8 4.8

APL 4.3 5.5 1.8 3.8

Table 6. Mean Ratings of Reliance Upon Each POL

(Scale: 0 = not at all. 7 = constantly throughout)

-14-

Participants coding in MACRO-11 stated that they relied most heavily on

the IIACRO-I PDL, followed by the FORTRAN and APL PDLs, respectively.

Overall, participants coding in FORTRAN stated that they relied most heavily

on the FORTRAN PDL, followed by the MACRO-11 and APL PDLs, respectively.

However, a closer examination of the table reveals that for the correlation

and rocket programs, the participants relied about equally upon the MACRO-li

and APL PDLs. It was only for the sort program that the participants relied

less on the APL PDL than on the MACRO-li PDL.

Experiential Factors

The participants were asked the number of years they had programmed

professionally and the number of programming languages they knew. No

correlation was found between time to code and debug and these experiential

factors.

-15-

DISCUSSION

Substantial differences were observed among the three problems used in

this experiment. The correlation problem was associated with the shortest

times and fewest errors, the sort problem resulted in the poorest performance,

and the rocket problem was in-between. This result parallels our past

experiences in finding substantial differences across problems.

Substantial differences were also observed among the three versions of

PDL. For programmers coding in MACRO-Il, the MACRO-il PDL was associated with

the shortest coding times. For participants coding in FORTRAN, the FORTRAN

PDL led to the shortest coding times. This result suggests that it is easiest

to code in a PDL tailored to your particular coding language.

For participants coding in both FORTRAN and MACRO-II, the APL PDL was

associated with the longest coding times. The differences among the three

programming languages explain this result. APL is an extremely concise

programming language, requiring fewer instructions than either FORTRAN or

MIACRO-ll. This difference among the languages is reflected in the

corresponding PDLs. Thus the participants were required to contribute more of

the details required for coding when using the APL PDL than when using either

the FORTRAN or MACRO-Il PDLs for programming in those two languages. The lack

of detail in the APL PDL is probably responsible for the increase in coding

times.

Although no significant differences in the number of errors were found

among the three versions of PDL for participants coding in either language,

-15-

the errors did follow the same trend as the coding times. The smallest number

of errors for each coding language was associated with the POL tailcred to

that coding language. In addition, for each coding language, the APL PDL was

associated with the largest number of errors. The overall number of errors was

quite low. This is probably due to the fact that the number of lines to be

coded was small. If the tasks had been longer, it is possible that

significant differences as a function of type of PDL would have been found.

The participants' choices for the easiest/hardest to use PDL and ratings

of how much they relied on each PDL provided very clear results. Participants

coding in MACRO-li found the MACRO-il PDL easiest to use, and participants

coding in FORTRAN found the FORTRAN PDL easiest to use. This result parallels

the results for the coding times and supports the notion that ease of

translation is an important determinant of performance.

Participants coding in MACRO-lI said they found the APL PDL hardest to use

and this was reflected in their performance. These participants took longer

to produce the missing code when they were using the APL PDL (21.2 minutes)

than when they were using the MACRO-Il (12.2 minutes) or FORTRAN (17.7

minutes) POLs. However, the participants coding in FORTRAN said they found

the MACRO-il PDL hardest to use in spite of the fact that they did better with

the M1ACRO-lI POL than with the APL PDL. These participants coded the programs

considerably more quickly when using the 14ACRO-11 PDL (11.2 minutes) than when

using the APL PDL (17.5 minutes). One explanation for this result may be the

difference in level of detail of the three PDLs. The APL PDL contains

high-level concepts, the FORTRAN is in-between, and the MACRO-11 contains

-17-

low-level details. The high-level concepts of APL (e.g., "Sort Xi such that

Xi<X(i+l)") may not provide enough detail to be useful to the 14ACRO-Il or

FORTRAN programmers in actually producing code. On the other hand, the

MACRO-l PDL provides low-level details, such as which values are stored in

which registers, which is more information than a programmer would require to

code in FORTRAN. This suggests that while code cannot always be derived

directly from an APL PDL, it can be from a MACRO-11 PDL, although the

programmer is required to interpret and integrate several lines of MACRO-Il

PDL to obtain one line of FORTRAN code. The effort expended in translating

the MACRO-11 POL into FORTRAN statements may be what is reflected in the

choice of the MACRO-11 PDL as the hardest to use for the participants coding

in FORTRAN.

The ratings by the participants coding in FORTRAN of how much they relied

on each PDL would tend to support this explanation. Overall, these

participants' ratings suggest that they relied more heavily upon the MACRO-11

than on the APL PDL (see Table 6). A closer examination of the ratings

reveals that for the correlation and rocket problems, the participants relied

about equally on the MACRO-71 and APL PDLs; however, for the sort problem, the

participants relied much more heavily on the MACR-11 PDL than on the APL

PDL. An examination of the POLs for each problem suggests that the APL POL

for the sort problem is the most succinct, and provides the least amount of

guidance to a programmer as to the content of the actual code.

As in our previous experiments, we compared performance to several

experiential factors. In some of our previous experiments, number of

programming languages known was highly correlated with performance, while

-18-

years of programming experience was not correlated with performance. 'n this

experiment, years of experience and number of programming languages known were

not correlated with each other or with performance. This difference from past

results may be explained by the smaller sample size used in this experiment.

Taken as a whole, the data from this experiment suggest that providing

detailed design information in terms of a language-specific PDL will lead to a

shorter coding period than when a language-independent PDL is used.

I
1

)

-19-

TTT; -PROGRAM CORRELATION

ACKNOWLEDGEMENTS

The authors would like to thank Sue Hannon and John McBeth of GE in

Lanham, Maryland, Dave Markham of GE in Sunnyvale, California, and Roger

Collins of GE in Arlington, Virginia for providing participants and

facilities; Bryan Wolfe for constructing the MACRO-11 programs; Dave Morris

and Pete IcEvoy for designing the automatic data collection system; Dr. John

O'Hare for advice; and Tom McDonald for preparing materials and statistical

analyses.

-20-

REFERENCES

Barrodale, I., Roberts, F. D. K., & Ehle, B. L. Elementary computer applica-
tions in science, engineering, and business. New York: Wiiey, 1971.

Jones, C. A survey of programming design and specification techniques. In
Proceedings of the IEEE Conference on Specifications of Reliable
Software. New York: IEEE, 1979.

Leintz, B. P. & Swanson, E. G. The use of productivity aids in system devel-
opment and maintenance (Technical Report 79-1). Los Angeles: UCLA,
Graduate School of M7anagement, 1979.

Perlis, A. J. Controlling software development through the life cycle model.
In A. J. Perlis, F. G. Sayward, & M. Shaw (Eds.), Software 'Ietrics:
An analysis and evaluation. Cambridge: The MIT Press, 1981.

Sheppard, S. B., Curtis, B., Milliman, P., & Love, T. Modern coding practices
and programmer performance. Computer, 1979, 12 (12), 41-49.

Sheppard, S. B. & Kruesi, E. The effects of the symbology and spatial ar-
rangement of software specifications in a coding task. in Proceedings of
Trends & Applications 1981: Advances in Software Technology. New York:
IEEE, 1981.

Winer, B. J. Statistical principles in experimental design. New York: McGraw-
Hill, 1971.

-21-

APPENDIX A

PDL FORMATS

I iiCLDL4. pA; Bl.ANK(-NO1 T nui.s.i

VMC~

PROGRAM CORRELATION

MAIN: CALL CORKi ;READs N, ARRAY X AND ARRAY Y

S UMX -O

S UMXS Q -0

SUMYSQ-0-

RO -m- N

RO 2*

R1*-

LOOP: SUMX--SUMX + X(R1)

SUMY-*--SUMY + Y(R1)

SUMXSQ.-SUMXSQ + X(RJ. * X(RJ.

SUMySQ--SUMYSQ + Y(R1) * Y(R1)

SUMXY-.-SUMXY + X(R1) * Y(R1)

RI--R + 2
IF Rl:. ..Ro GO To LOOP

SET FLOAT MODE

SET (SHORT) INTEGER

AC2^-o-SUMXSQ -(SUMX SUW1X) +N

AC3---SUMYSQ -(SUMY *SUM?) + N'

PARM-*--AC2 * AC3

R5.-4PBLK

CNUM-a-SUMXY - (SUMX *SUMY) +: N

CALL $SQRT

CDEN~-- RtV

CDEN + 2---RI

CORR-a-CMUM + CDEN

CALL CORR2 ;WRITES CORR

END OF CORR -25-l p~ LWNTnA

F OR7RA,

PROGRAM CORR

READ FROM 'RDATA': N

FOR I FROM 1 To N DO
READ FROM 'RDATA': X(I)

READ FROM 'RDATA': Y(I)

ENDDO

SET SUMX = 0

SET SUMY = 0

SET SUMXSQ = 0

SET SUMYSQ = 0

SET SUMXY = 0

FOR I FROM 1 To N DO
SET SUMX = SUMX + XCI)

SET SUMY = SUMY + Y(I)

SET SUMXSQ = SUMXSQ + X(I)**2

SET SUMYSQ = SUMYSQ + Y(I)**2

SET SUMXY = SUMXY + X(I) *Y(I)

ENDDO

SET CORR = (SUMXY - SUMX * SUMY/N)/

SQRT((SUMXSQ - SUMX**2/N)*

(SUMYSQ - SUMY**2/N))

PRINT CORR

END OF CORR

-26-

APL

PROGRAM CORR

READ Xi FOR - =i

READ Yi FOR i = 1,,

R=

-i X) N) (2: yi2 (y.)Z N)

PRINT R

END OF CORR

I

MACRO

PROGRAM ROCKET

MAIN: CALL ROCK1 ;READS IN 3 INTEGERS: ACC, MAXTIM, TSTEP

R4--- MAXTIM/TSTEP
N-'- R4

R4---(R4 + 1) * 2
R1--- 2

LOOP: T(R1)-%--((RI - 2)/2) * TSTEP

VEL(R1)-- ACC * T(R1)

S UMVE L--- 0
R2---2

INNER: SUMVEL-- SUMVEL + VEL(R2)

R2---R2 + 2

IF R2-R1 GO TO INNER

DIST(R1)"--SUMVEL * TSTEP
Ri-*-- Ri + 2

IF R1 .R4 GO TO LOOP

CALL ROCK2 ;WRITES T, DIST, VEL

END OF ROCKET

-28-

FORT RAN

PROGRAM ROCKET

READ FROM 'RDATA': ACC, MAXTI, TSTEP

SET N = MAXTIM/TSTEP

FOR IFROM 1TO N+ 1DO

SET T(I) = TSTEP. U11
SET VEL(I) = T(I) *ACC

SET SUMVEL = 0

FOR J FROM 1 TO I DO

SET SUMVEL =SUMVEL + VEL(J)

ENDDO

SET DIST(I) TSTEP * SUMVEL

ENDDO

FOR I FROM 2 TO N + 1 DO

PRINT T(I),# DIST(J, VEL(I)

ENDDO

END OF ROCKET

-29-

APL

PROGRAM ROCKET

READ ACC

READ MAXTIM

READ TSTEP

ACC = FORCE + MASS

N : MAXTIM t TSTEP

Ti : -1(TSTEP) FOR ,- +

VEL4 : Ti(ACC) i FOR Ai :

DISTZ = TSTEP(VEL) FOR . N

PRINT Tz FOR =N

PRINT DISTZ FOR i

PRINT VELi FOR i

END OF ROCKET

-30-

MACRO

PROGRAM SORT

MAIN: CALL SORTi .;READS IN N AND ARRAY X
R1---N

R1-e- 2 * R1

DONE-,--FALSE

ILOOP: IF R1 -2 GO TO SORTDN

IF DONE GO TO SORTDN
R2-" 2

DONE---TRUE

JLOOP: IF R2>R1 GO TO NEXTI

IF X(R2)<X + 2(R2) GO TO NEXTJ

R5-.-*-X(R2)

X(R2)---X + 2(R2)

X + 2(R2)---R5
DONE---FALSE

NEXTJ: R2--- R2 + 2

GO TO JLOOP

NEXTI: R1---R1 - 2

GO TO ILOOP

SORTDN: CALL SORT2 ;WRITES ARRAY X IN ASCENDING ORDER

END OF SORT

-31-

FORTRAN

PROGRAM SORT

READ N

FOR I = 1 TON

READ FROM 'SDATA': X(I)

ENDDO

SET I = N

SET DONE = FALSE

WHILE 1>2 OR DONE = TRUE DO

SET J = 1

SET DONE = TRUE

WHILE J<1 DO

IF (X(J)>X(J+I)) THEN

SET TEMP = X(J)

SET X(J) = X(J + 1)

SET X(J + 1) = TEMP

SET DONE = FALSE

ENDIF

SET J J + 1

ENDDO

SETI I-1

ENDDO

PRINT X(I) FOR I 1,...,N

END OF SORT

-32-

APL

PROGRAM SORT

READ Xi FOR 1,

SORT Xi SUCH THAT Xi X fi+l) FOR i - 1
PRINT Xi FOR i ,,

END OF SORT

-33-

I

APPENDIX B

PROGRAM4 LISTINGS

-35- 1 I.CdIuP i 2..L

100 TITLE PROGRAM CORRELATION
110 iTHIS PROGRAM CALCULATES A CORRELATION COEFFICIENT FOR
120 ;TWO SETS OF NUMBERS
130 REGISTER AND ACCUMULATOR DESCRIPTIONS:
140 RO NUMBER OF PAIRS OF ITEMS, EQUAL TO N
150 , R1 LOOP COUNTER
lo0 R3 WORKING STORAGE
170 * ACO FLOATING POINT REPRESENTATION OF N
1sO AC1 FLOATING POINT WORKING STORAGE
190 ; AC2 FLOATING POINT WORKING STORAGE
200 AC3 FLOATING POINT WORKING STORAGE
201 REMINDER: THE PDP 11 IS A BYTE-ADDRESSABLE COMPUTER.
202 THE ADDRESSES OF CONSECUTIVE WORDS OF STORAGE DIFFER
203 ; BY TWO.
210 ACO=%0
Z20 AC1=%l
230 AC2=%2
240 AC3=13
250 GLOBL MAIN
260 PSECT CDATA. D, GBL, OVR
270 X: BLKW 100.
290 Y BLKW 100.
290 N: WORD 5
300 CORR: BLKW 2
310 PBLK: WORD 1,PARM
320 PARM: BLKW 2
330 SUMX: BLKW 1
340 SUMY: BLKW 1
345 SUMXY: BLKW 1
350 SUMXSQ: BLKW 1
360 SUMYSQ: BLKW 1
370 CNUM: BLKW 2
380 CDEN: BLKW 2
390 PSECT $CODEi, I, CON
400 MAIN: CALL CORR1
410 CLR SUMX
420 CLR SUMY
430 CLR SUMXY
440 CLR SUMXSQ
450 CLR SUMYSG
460 MOV N, RO
470 ASL RO
480 MOV #2.R1
490 LOOP: NOP
500 ***YOUR CODE GOES HERE***
510
520
530
540
550
560
600 MOV Y(RI),R3
610 MUL R3,R3
620 ADD R3, SUMYSQ
630 MOV X(R1),R3
640 MUL Y(R1),R3
650 ADD R3, SUMXY
660 ADD #2,R1
670 CMP R1,RO
680 BLE LOOP
6 9 0 S E T F 37 - h -EC XD Q P A M Z Aj g 4V

, 7 t)SET I
710 LOCIF SUMX.ACI
/=o MULF AC1,AC1
730 LDCIF W.ACO
740 DIVF AC0,AC1
750 LOCIF SUMXSQ.AC2
7.50 SUBF AC1,AC2
77 7 LDCIF SUMY,AC1
7.30 MULF AClACI
7P0 OIVF ACOACI
S00 LDCIP SUMYSGAC3
910 SUBF AC1.AC3
G20 MULF AC3. AC2
830 STF AC2,PARM
840 mov #PBLiA,R5
8350 LDCIF SUMX.AC1
960 LIDCIF SUMYAC2
S70 MULF AC2,AC1
880 DIVF ACOACi
B90 LDCIF SUMXY,AC3
900 SUBF ACIAC3
910 STF AC3,CNUM
920 CALL $SQRT
930 moV RO.CDEN
940 moV Ri. CDEN+2
950 LOF CNUM, ACO

9P-10 DIVF CDENACO
9-70 STF ACO, CORR
980 CALL CORR2
9c~0 RETURN

99 END

r500 ADD X(Rl),SUMX]
510 ADD Y(Rl),SUMY
520 moV X(RI).R3
5.30 MUL R3, R3

L 540 ADD R3,SUMXSQ

-38-

130 C PROGRAM CORRELATION
110 C THIS PROGRAM CALCULATES THE CORRELATION COEFFICIENT FOR TWO
120 C SETS OF NLUMBERS
130 INTEGER X100),Y(100)
140 OPEN (UNIT=3, NAME='CDATA',TYPE 'OLD')
150 READ (3, 1000) N
10 1000 FORMAT (15)
170 DO 100 1 = 1, N
1S0 READ (3,1001) X(I)
190 100 CONTINUE
200 DO 110 I = 1, N
210 READ (3,1001) Y(l)
220 110 CONTINUE
230 1001 FORMAT(13)
240 SUMX = 0
250 SUMY = 0
260 SUMXY = 0
270 SUMXSG = 0
280 SUMYSQ = 0
290 DO 300 I = 1, N
300 C ***YOUR CODE GOES HERE***
310

530330

340
350
360
500 SUMXY = SUMXY + (X(I) * Y(I))
510 300 CONTINUE
520 CORR = (SUMXY - SUMX * SUMY/N)/
530 1 SQRT((SUMXSG - SUMX **2/N)*
540 2(SUMYSQ - SUMY ** 2/N))
550 WRITE(6,1002) CORR
560 1002 FORMAT(' CORR =',F16.5)
570 CLOSE(UNIT=3)
580 STOP
590 END

F300 SUMX SUMX +X(I)
310 SUMY = SUMY + Y(I)
20 SUMXSQ = SUMXSQ + X(1)**I30 SUMYSQ = SUMYSQ + Y(r)**2

-39-

1

100 TITLE PROGRAM ROCKET

1iO ;THIS PROGRAM SIMULATES THE PATH OF A ROCKET
120 REGISTER DESCRIPTIONS:
130 RI INDEX INTO ARRAYS T, VEL, AND DIST
140 R2 INDEX INTO ARRAY VEL FOR COMPUTING
150 THE SUM OF THE VELOCITIES
loo R3 WORKING STORAGE
170 R4, R5 : HOLD THE GUQTIENT AND REMAINDER, RESPECTIVELY,
ISO WHEN MAXTIM/TSTEP IS CALCULATED. R4 THEN BECOMES
1(0 THE LOOP COUNTER
200 NOTE. INCLUDING INITIALIZATIONS, N + I VALUES
210 WILL BE COMPUTED. N IS CONVERTED TO
220 ,BYTE COUNT
21 REMINDER THE PDP 11 IS A BYTE-ADDRESSABLE COMPUTER.
222 THE ADDRESSES OF CONSECUTIVE WORDS OF STORAGE
222 .DIFFER BY TWO.
230 GLOBL MAIN
240 PSECT ROATA, DGBL, OVR
250 T BL W 50.
260 DIST: BLW 50.
r70 VEL BL'W 50.
Z90 ACC: BLKW 1.
2 90 N+ SLAW 1.
300 MAXTIM: BLAW 1.
310 TSTEP: SLAW 1.
3"0 SUMVEL: BLW i.
330 PSECT $CODEI, ICON
340 MAIN: CALL ROCK1
350 MOV MAXTIMR5
360 CLR R4
370 DIV TSTEP,R4
380 MOV R4,N
!70 INC R4
400 ASL R4
410 MOV #2,RI
4 20 LOOP: MoV RlR3
430 SUB #2, R3
440 ASR R3
450 MUL TSTEP,R3
400 MOV R3,T(RI)
470 MUL ACCR3
480 MOV R3,VEL(R1)
490 CLR SUMVEL
500 MOV #2, R2
510 INNER: ADD VEL(R2),SUMVEL
520 ADD #2, R2
530 , ***YOUR CODE GOES HERE***
540
550
560
570 530 CMP R2,R1
580 540 BLE INNERL34 550 MOV SUMVELR3
600 ADD #2,RI 560 MUL TSTEPR3
610 CMP RIR4 570 MOV R3,DIST(R1

0 BLE LOOP
630 CALL ROCK2
620 RTS PC
550 END

-40-

100 TITLE PROGRAM SORT
110 ;THIS PROGRAM SORTS INTEGERS IN ASCENDING ORDER
120 REGISTER DESCRIPTIONS.
130 Ri POINTS TO THE ARRAY ELEMENT
140 IN THE HIGHEST ADDRESS NOT YET SORTED
150 R2 POINTS INTO ARRAY X AND ARRAY SEGUENCES
10 FROM THE ELEMENT IN THE LOWEST ADDRESS
170 UP TO RI
160 0 R5 TEMPORARY STORAGE FOR SWAPPING ARRAY
190 * ELEMENTS
i9l REMINDER: THE POP 11 IS A BYTE-ADDRESSABLE COMPUTER.
12 THE ADDRESSES OF CONSECUTIVE WORDS OF STORAGE
193 DIFFER BY TWO,
200 GLOBL MAIN
Zi0 PSECT SDATA,D,GBL,OVR
;-0 N: SLAW I
230 X. BLAW 100.
240 DONE: BLAW 1
250 PSECT $CODEI, I, CON
Z0 MAIN: CALL SORTI
270 MOV N,R1
260 ASL RI
290 CLR DONE
300 ILOOP CMP Rl,#2
310 BLE SORTDN
320 TST DONE
330 BNE SORTDN
340 MOV #2, R2
350 MOV #1,DONE
360 JLQOP: NOP
370 ***YOUR CODE GOES HERE***
3aO
390
400
4t0
420
430
500 MOV X(R2),R5
510 MoV X+2(R2),X(R2)
520 MOV R5,X+2(R2)
530 CLR DONE
540 NEXTJ: ADD #2,R2
550 BR JLOOP
560 NEXTI: SUB #2,R1
570 BR ILOOP
5SO SORTON: CALL SORT2
590 RTS PC
600 .END

F7 0 CMP R2,Rl
380 BGE NEXTI
390 CMP X(R2),X+2(R

1400 BLE NEXTJ

-41-

I

iQ0 C PROGRAM ROCKET
110 C THIS PROGRAM SIMULATES THE PATH OF A POCKET
120 INTEGER MAXTIM,TSTEPACC,N,SUMVEL
130 INTEGER T(50)0DIST(50),VEL(50)
140 OPEN (UNIT=3,NAME='PDATA. DAT',TYPE='OLD')
150 1000 FORMAT (313)
1.:)0 READ (3,1000) ACCMAXTIMTSTEP
170 N = MAXTIM/TSTEP
180 DO 10 I = 1,N+1
190 T(I) = TSTEP * (I - 1)
200 VEL(I) = T(1) * ACC
210 SUMVEL = 0
Z20 C ***YOUR CODE GOES HERE***
Z30
240

250
270

260
400 10 CONTINUE

410 20 WRITE (6,2000)(T(I), DIST(I), VEL(I),I =2,N+I)
420 2000 FORMAT (' T = ',110, ' DIST = ',110, ' VEL = ',110)
430 CLOSE (UNIT=3)
440 STOP
450 END

[20 00 5 j = ,I
230 5 SUMVEL = SUMVEL + VEL(J
2 40 DIST(I) = TSTEP * SUMVELJ

-42-

17o0 C PROGRAM SCRT
110 C THIS PROGRAM SORTS INTEGERS IN ASCENDING ORDER
120 INTEGER X.10), N
130 LOGICAL DONE
140 OPEN (UNIT=30NAME='SDATA DAT',TYPE= OLD')
150 READ (3,1000) N
1,0 1000 FORMAT(13)
170 DO 100 I = 1, N
180 READ(3, 1000) X(I)
10 100 CONTINUE
200 200 I = N
210 DONE = FALSE
220 210 IF (I LT. 2 OR. DONE)G0 TO 300
230 J=i
240 DONE = TRUE
250 220 CONTINUE
260 C ***YOUR CODE GOES HERE***
270
250

290
300
310
320
500 TEMP = X(j)
510 X(J) = X(- + 1)
520 X(J + 1) = TEMP
530 DONE = FALSE
540 230 j = J + I
55C GO TO 220
560 250 1 = I - I
570 GO TO 210
580 300 WRITE (6,2000)(X(Il = 1. N)
590 2000 FORMAT(IOI3)
600 CLOSE(UNIT=3)
610 STOP
620 END

60IF (J GE.I1) GO TO 2 50 O2O70 IF (XJ) LE, X(J+I)) -;0 TO 230

-43-

TECHNICAL REPORTS

DISTRIBUTION LIST

-45-

OFFICE OF NAVAL RESEARCH

Code 442

TECHNICAL REPORTS DISTRIBUTION LIST

OSD Department of the Navy

Capt. Paul R. Chatelier
Office of the Deputy Under Secretary ONR Eastern/Central Regional Officeof DefenseOREatr/etaReinl ficOUSDRE (E&LS) ATTN: Dr. J. LesterPeagon Room D495 Summer StreetPentagon, Room 3Dl29 Boston, MA 02210Washington, DC 20301

Commanding Officer

Department of the Navy ONR Western Regional Office
ATTN: Dr. E. Gloye

Engineering Psychology Programs P030 East Green Street
Code442Pasadena, CA 91106Code 442

Office of Naval Research Office of Naval Research
800 North Quincy Street Scientific Liaison Group
Arlington, VA 22217 American Embassy, Room A-407

Communication & Computer Technology APO San Francisco, CA 96503
Programs Director

Code 240 Naval Research Laboratory
Office of Naval Research Technical Information Division
800 North Quincy Street Code 2627
Arlington, VA 22217 Washington, DC 20375

Tactical Development & Evaluation Dr. Michael Melich
Support Programs Communications Sciences Division

Code 230 Code 7500
Office of Naval Research Naval Research Laboratory
800 North Quincy Street Washington, D.C. 20375
Arlington, VA 22217

Dr. Louis ChmuraManpower, Personnel and Training Code 7592
Program Naval Research Laboratory

Code 270 Washington, D.C. 20375
Office of Naval Research
800 North Quincy Street 1ir. Robert G. Smith
Arlington, VA 22217 Office of the Chief of Naval

Physiology & Neuro Biology Programs Operations, oP987H
Code 441 B Personnel Logistics Plans
Office of Naval Research Washington, DC 20350

800 North Quincy Street Dr. Jerry C. Lamb
Arlington, VA 22217 Combat Control Systems

Special Assistant for Marine Naval Underwater Systems Center
Corps Mattrs Newport, RI 02840

Code lOOM Naval Training Equipment Center
Office of Naval Research ATTN: Technical Library
800 North Quincy Street Orlando, FL 32313
Arlington, VA 22217

-47-

k-iECD []

Department of the Navy Department of the -avy

Human Factors Department Commanding Officer
Code N-71 MCTSSA
Naval Training Equipment Center Marine Corps Base
Orlando, FL 32813 Camp Pendleton, CA 92055

Dr. Alfred F. Smode Chief, C3 Division
Training Analysis and Evaluation Development Center

Group MCDEC
Naval Training Equipment Center Quantico, VA 22134
Code TAEG
Orlando, FL 32813 Dr. Robert Wisher

Naval Material Command
Dr. Albert Colella NAVYAT 0722 - Room 508
Combat Control Systems 800 INorth Quincy Street
Naval Underwater Systems Center Arlington, VA 22217
Newport, RI 02840

Commander
K.L. Britton Naval Air Systems Command
Code 7503 Human Factors Programs
Naval Research Laboratory NAVAIR 340F
Washington, D.C. 20375 Washington, DC 20361

Dr. Gary Poock Commander
Operations Research Department Naval Air Systems Command
Naval Postgraduate School Crew Station Design
Monterey, CA 93940 NAVAIR 5313

Washington, DC 2036T
Dean of Research Administration
Naval Postgraduate School Mr. Phillip Andrews
Monterey, CA 93940 Naval Sea Systems Command

NAVSEA 0341
Mr. Warren Lewis Washington, DC 20362
Human Engineering Branch
Code B231 Commander
Naval Ocean Systems Center Naval Electronics Systems Command
San Diego, CA 92152 NC #1 Room 4E56

Code 81323
Dr. A. L. Slafkosky t.Iashington, DC 20360
Scientific Advisor
Commandant of the Marine Corps Dr. Arthur Bachrach
Code RD-l Behavioral Sciences Department
Washington, DC 20380 Naval Medical Research Institute

Bethesda, M1D 20014
HQS, U.S. Marine Corps
ATTN: CCA40 (Major Pennell) Dr. George Moeller
Washington, D.C. 20380 Human Factors Engineering Branch

Submarine Medical Research Lab
Naval Submarine Base
Groton, CT 06340

-48-

Department of the Navy Department of the Navy

Head Dean of the Academic Departments
Aerospace Psychology Department U.S. Naval Academy
Code L5 Annapolis, MD 21402
Naval Aerospace Medical Research Lab
Pensacola, FL 32508 Human Factors Section

Systems Engineering Test Directorate
Dr. James McGrath U.S. Naval Air Test Center
CINCLANT FLT HQS Patuxent River, MD 20670
Code 04E1
Norfolk, VA 23511 Dr. Robert Carroll

Office of the Chief of Naval
Navy Personnel Research and Operations (OP-llS)

Development Center Washington, DC 20350
Planning & Appraisal Division
San Diego, CA 92152

Department of the Army

Dr. Robert Blanchard
Navy Personnel Research and fir. J. Barber
Development Center HQS, Department of the Army

Command and Support Systems DAPE-MBR
San Diego, CA 92152 Washington, DC 20310

LCDR Stephen D. Harris Technical Director
Human Factors Engineering Division U.S. Army Research Institute
Naval Air Development Center 5001 Eisenhower Avenue
Warminster, PA 18974 Alexandria, VA 22333

Dr. Julie Hopson Director, Organizations and Systems
Human Factors Engineering Division Research Laboratory
Naval Air Development Center U.S. Army Research Institute
Warminster, PA 18974 5001 Eisenhower Avenue

Alexandria, VA 22333
Mr. Jeffrey Grossman
Human Factors Branch Technical Director
Code 3152 U.S. Army Human Engineering Labs
Naval Weapons Center Aberdeen Proving Ground, MD 21005
China Lake, CA 93555 ARI Field Unit-USAREUR

Human Factors Engineering Branch ATTN: Library
Code 1126 C/O ODCSPER
Pacific Missile Test Center HQ USAREUR & 7th Army
Point Mugu, CA 93042 APO New York 09403

Mr. J. Williams
Department of Environmental Sciences Department of the Air Force
U.S. Naval Academy
Annapolis, MD 21402 U.S. Air Force Office of Scientific

Research
Life Sciences Directorate, NL
Bolling Air Force Base
Washington, DC 20332

-49-

III I I I II.. .I I

Department of the Air Force Other Government Agencies

Chief, Systems Engineering Branch Dr. Craig Fields

Human Engineering Division Director, Cybernetics Technology Office
USAF A1RL/HES Defense Advanced Research Projects
!Iright-Patterson AFB, OH 45433 Agency

1400 Wilson Boulevard

Dr. Earl A7luisi Arlington, VA 22209
Chief Scientist
AFHRL/CCN Dr. 1I. Iontemerlo
Brooks AFB, TX 78235 Human Factors & Simulation

Technology, RTE-6
NASA HQS

Foreign Addressees Washington, D.C. 20546

North East London Polytechnic Other Organizations
The Charles Myers Library
Livingstone Road Dr. Jesse Orlansky
Stratford Institute for Defense Analyses

London E75 2LJ 1801 N. Beauregard Street

ENGLAND Alexandria, VA 22311

Professor Dr. Carl Graf Hoyos Dr. Robert T. Hennessy

:nstitute for Psychology NAS - National Research Council

Technical University Committee On Human Factors

3000 'lunich 2101 Constitution Avenue, N.W.

Arcisstr 21 Washington, DC 20418

FEDERAL REPUBLIC OF GERMANY
Dr. Robert Williges

Dr. Kenneth Gardner Dept. of Industrial Engineering

Applied Psychology Unit Virginia Polytechnical Institute

Admiralty Marine Technology and State University

Establishment 130 Whittemore Hall

Teddington, Middlesex TWIl OLN Blacksburg, VA 24061

ENGLAND
Mr. Edward M. Connelly

Director, Human Factors Wing Performance Measurement

Defence & Civil Institute of Associates, Inc.

Environmental Medicine 410 Pine Street, S.E.

Post Office Box 2000 Suite 300

Downsview, Ontario M3r1 3B9 Vienna, VA 22180

CANADA
Dr. Richard W. Pew

Dr. A. D. Baddeley Information Sciences Division

Director, Applied Psychology Unit Bolt Beranek & Newman, Inc.
Medical Research Council 50 Moulton Street
15 Chaucer Roa Cambridge, MA 02238
Cambridge, CB2 2EF
ENGLAND

Other Government Agencies

Defense Technical Information Center
Cameron Station, Building 5
Alexandria, VA 22314 (12)

-50-

